INSTRUCTIONS FOR PART I: Write your answers for these questions on a scantron (form 882-ES or 882-E) and mark only one answer per question.

Each of the 8 questions in this part counts 6 points each, for a total possible score of 48 points. You may use an approved calculator. You may write on this exam or request scratch paper if needed.

1. [7.2/~Example 3] How many applications of integration by parts are needed to evaluate \(\int x^4 \sin x \, dx \)?
 A. 1 B. 2 C. 4 D. 6 E. none of these

2. [7.2/~Example 6] Which technique must be used to evaluate \(\int x \tan^{-1} x \, dx \)?
 A. one use of integration by parts with \(u = x \)
 B. one use of integration by parts with \(u = \tan^{-1} x \)
 C. no integration by parts, use the substitution \(u = x \)
 D. no integration by parts, use the substitution \(u = \tan^{-1} x \)
 E. no integration by parts, use the substitution \(u = x \tan^{-1} x \)

3. [6.3] Consider the two polar curves: \(r = 3\sqrt{3} \cos \theta \) and \(r = 3 \sin \theta \). The points \(P_1, P_2, P_3, \) and \(P_4 \) are in polar coordinates. Which one of the statements A-E below is true?

\[
P_1 \left(\frac{3\sqrt{3}}{2}, \frac{\pi}{3} \right), \quad P_2 \left(-\frac{3\sqrt{3}}{2}, \frac{4\pi}{3} \right), \quad P_3 (0,\pi), \quad P_4 \left(-\frac{3\sqrt{3}}{2}, \frac{\pi}{3} \right)
\]

A. \(P_1 \) and \(P_2 \) lie on both curves; \(P_3 \) and \(P_4 \) do not lie on either curve.
B. \(P_1 \) and \(P_2 \) lie on both curves; \(P_3 \) and \(P_4 \) do not lie on either curve.
C. \(P_1, P_2 \) and \(P_3 \) lie on both curves; \(P_4 \) does not lie on either curve.
D. \(P_2 \) and \(P_3 \) lie on both curves; \(P_1 \) and \(P_4 \) do not lie on either curve.
E. \(P_2 \) and \(P_4 \) lie on both curves; \(P_1 \) and \(P_3 \) do not lie on either curve.
4. [6.2/35] The volume of the solid generated when the region bounded by \(y = x^2 \) and \(x = y^2 \) is revolved about the \(y \)-axis is given by

- A. \(2\pi \int _0^1 x \left(\sqrt{x} - x^2 \right) dx \)
- B. \(2\pi \int _0^1 \left(\sqrt{x} - x^2 \right) dx \)
- C. \(\pi \int _0^1 x \left(\sqrt{x} - x^2 \right) dx \)
- D. \(2\pi \int _0^1 \left(x^2 - \sqrt{x} \right) dx \)
- E. \(2\pi \int _0^1 \left(x^2 - \sqrt{x} \right) dx \)

5. [Lab2] Find the number \(k \) so that the line \(x = k \) bisects the area of the region bounded by \(y = \frac{1}{x^2} \), \(x = 1 \), and \(x = 6 \).

- A. \(\frac{5}{6} \)
- B. 1.258
- C. \(\frac{7}{2} \)
- D. \(\frac{12}{7} \)
- E. \(\frac{5}{12} \)

6. [6.4/20] The length of the polar curve \(r = e^{\theta} \), \(0 \leq \theta \leq 1 \) is

- A. \(\sqrt{2} (e+1) \)
- B. \(\sqrt{2}(e-1) \)
- C. \(-\sqrt{2} (e+1) \)
- D. \(2\pi (e+1) \)
- E. \(2\pi (e-1) \)

7. [6.1/~17] Below is the graph of \(y = x^3 - x^2 - 6x \). The area of the shaded region is given by

![Graph of \(y = x^3 - x^2 - 6x \)]

- A. \(\int _{-1}^{5} (x^3 - x^2 - 6x) \) dx
- B. \(\int _{-2}^{3} (x^3 - x^2 - 6x) \) dx
- C. \(\int _{-3}^{2} (x^3 - x^2 - 6x) \) dx
- D. \(\int _{-3}^{0} (x^3 - x^2 - 6x) \) dx \(- \int _{0}^{2} (x^3 - x^2 - 6x) \) dx
- E. \(\int _{-2}^{0} (x^3 - x^2 - 6x) \) dx \(- \int _{0}^{3} (x^3 - x^2 - 6x) \) dx
8. [Chapter 6 Review,~1] Convert the polar equation \(r = \frac{a}{b \cos \theta + c \sin \theta} \) to a rectangular equation (\(a, b, \) and \(c \) are nonzero constants).

A. \(r^2 = x^2 + y^2 \)
B. \(cy + bx = a \)
C. \(a^2 = bx + cy \)
D. \(bx - cy = a \)
E. \(ax + by = c \)

INSTRUCTIONS FOR PART II: For these questions, you must write down all steps in your solutions as if you did not have a calculator. Write legibly and carefully label any graphs or pictures. **Draw a box around your solution.** Partial credit will be given for those parts of your solution that are correct. Each of the questions in this part counts 10 points, for a total possible score of 50 points.

9. \([7.2/3]\int x \ln x \, dx\)

10. (6.1/18) Find the area of the regions bounded by graphs of \(y = \sin x, \ y = \cos x, \ x = 0, \) and \(x = \pi. \) Draw a carefully labeled graph and shade the region.

11. \([6.4/9]\) Compute the arc length of the curve \(x = \frac{1}{16} y^4 + \frac{1}{2y^2} \) between \(y = 2 \) and \(y = 3. \)

12. \([6.4/13]\) Compute the surface area of a solid of revolution generated by revolving \(y = 6x, \) \(0 \leq x \leq 1 \) about the \(x \)-axis.

13. \([6.2/44]\) Find the volume of the solid when the region bounded by \(y = x, \ y = 2x, \) and \(y = 1 \) is revolved about the line \(x = 1. \)