Properties of a System

Intensive Properties:

- **Density** \(\rho = \frac{m}{V} \) \((\text{kg/m}^3)\)
- **Specific gravity** \(\text{S.G.} = \frac{\rho}{\rho_{\text{H}_2\text{O}}} \) \(\rho_{\text{H}_2\text{O}} \approx 1000 \text{ kg/m}^3\)
- **Specific volume** \(v = \frac{V}{m} = \frac{1}{\rho} \) \((\text{m}^3/\text{kg})\)
- **Temperature**
 - \(T (^\circ \text{C} \text{ or } ^\circ \text{F} - \text{relative temperature}) \)
 - \(T (^\circ \text{K} \text{ or } ^\circ \text{R} - \text{absolute temperature}) \)

 \(^\circ \text{K} = ^\circ \text{C} + 273 \)
 \(^\circ \text{R} = ^\circ \text{F} + 459 \)

- **Pressure** \(P \) \((\text{Pa} = \text{N/m}^2, \text{kPa, bar} = 10^5 \text{ Pa})\)

 1 atm = 14.696 psi = 101,325 Pa

Extensive Properties:

- **Total mass**
- **Total volume**
- **Total energy**
Buoyancy Force

A buoyancy force is created by the increased pressure of a fluid with depth (note: the hydrostatic equation)

\[dp = -\rho_f g \, dh \]

where \(\rho_f \) is the fluid density, \(g \) is local acceleration due to gravity, and \(h \) is the depth.

\(dp \) is the differential pressure and \(dh \) is the differential depth.

If a plate of thickness \(h \) is placed in a fluid, the pressure on the upper surface is less than that on the lower surface.

\[F_b = F_{\text{bottom}} - F_{\text{top}} = \rho_f g(s + h)A - \rho_f g s A \]

or, \[F_b = \rho_f g V \]

where \(V = h A \)

\(F_b \) is therefore the buoyancy force upward and is equal to the weight of the displaced fluid.