MAE 2314 FLUID MECHANICS

SUMMER 2009

DEPARTMENT OF MECHANICAL
AND
AEROSPACE ENGINEERING

UNIVERSITY OF TEXAS AT ARLINGTON

EXAM #2

CLOSED BOOK AND NO NOTES
Only Nonprogrammable Calculators are allowed

AUGUST 5, 2009
Time Limit : 1 hr 45 min

This exam has 7 pages.

LAST NAME: [Signature]
FIRST NAME:

Announcement on types:
\[t = \frac{10^3}{10^6} \text{ yr} \]
Unless otherwise stated.
1. (20pts) A vertical jet of water leaves a nozzle at a speed of 10 m/s and a diameter of 20 mm. It suspends a plate having a mass of 1.5 kg as indicated. What is the vertical distance h? \((\rho = 999 \text{ kg/m}^3; \ g = 9.81 \text{ m/s}^2) \)

\[
W = m\ V_1 \Rightarrow V_1 = \frac{W}{m} = \frac{mg}{m} = g \cdot \frac{(15 \text{ kg})(9.8 \text{ m/s})}{3.14 \text{ kg/s}}
\]

\[
= 4.68 \text{ m/s}
\]

Applying Bernoulli’s Eq. between \(o \) to \(y \):

\[
\frac{P_0}{\rho} + \frac{V_3^2}{2} + g \cdot z_3 = \frac{P_1}{\rho} + \frac{V_2^2}{2} + g \cdot z_1
\]

\[
h = (z_1 - z_3) = \frac{V_2^2 - V_1^2}{2 \ g}
\]

\[
= \frac{(10^2 - 4.68^2) \text{ m}^2/\text{s}^2}{2 \ (9.8) \text{ m/s}^2} = 3.88 \text{ m}
\]
2a. (5pts) The velocity components in a steady, incompressible, two-dimensional flow field are: \(u = 2x; \ v = -2y \)
For this flow field find the equation of the streamline through the point (1,1).

\[
\begin{align*}
\frac{dy}{dx} = \frac{v}{u} = \frac{-2y}{2x} &= -\frac{y}{x} \\
\Rightarrow \quad \frac{dy}{y} = \frac{-dx}{x} &\quad \Rightarrow \quad \ln y = -\ln x + \ln c \\
\Rightarrow \quad y &= cx \quad \text{The streamline passes through (1,1)}
\end{align*}
\]

\(c = 1 \Rightarrow xy = 1 \)

2b. (5pts) An incompressible velocity field is given by \(u = a(x^2-y^2) \), \(v \) unknown, \(w = b \), where \(a \) and \(b \) are constants. What must the form of the velocity component \(v \) be?

\[
\begin{align*}
u &= \frac{\partial}{\partial y} \left(a(x^2-y^2) \right) \\
\text{Incompressible flow} &\Rightarrow \triangledown \cdot \vec{v} = 0 \\
\Rightarrow \quad \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} &= 0 \\
\Rightarrow \quad 2ax + \frac{\partial v}{\partial y} + 0 &= 0 \\
\Rightarrow \quad \frac{\partial v}{\partial y} &= -2ax \\
\Rightarrow \quad v &= -2axy + f(x,z,t)
\end{align*}
\]

2c. (5pts) The stream function for a two-dimensional, incompressible flow field is given by \(\psi = x^2 + y^2 \). Is this an irrotational flow field? Explain.

\[
\begin{align*}
\frac{\partial \psi}{\partial y} &= 2x \\
\frac{\partial \psi}{\partial x} &= 2y \\
\Rightarrow \quad \frac{\partial \psi}{\partial y} - \frac{\partial \psi}{\partial x} &= 2x - 2y = 2(\psi) - 2(-\psi) = 4 \Rightarrow \text{Irrotational}
\end{align*}
\]
3. (15pts) The transient temperature distribution in a fluid is given by \(T = (10x + 5y)(1 + t) \), where \(x \) and \(y \) are the horizontal and vertical coordinates in meters, \(T \) in degrees centigrade and \(t \) is time in seconds. Determine the time rate of change of temperature of a fluid particle located at \((1,2)\) at \(t = 5 \):

(i) travelling horizontally in the \(x \)-direction (i.e. \(\theta = 0^\circ \)) at \(1 \) m/s.

\[
\frac{dT}{Dt} = \frac{dT}{dt} + u \frac{dT}{dx} = 80 \degree C/s
\]

\[
\left(10x + 5y\right) \quad \frac{1}{10(1+t)}
\]

\[
= 80
\]

(ii) travelling diagonally (i.e. \(\theta = 45^\circ \)) at \(1 \) m/s.

\[
\frac{dT}{Dt} = \frac{dT}{dt} + \left(\frac{\sqrt{2}}{2} u \right) \frac{dT}{dx} + \left(\frac{\sqrt{2}}{2} v \right) \frac{dT}{dy}
\]

\[
\frac{\sqrt{2}}{2} u = \frac{\sqrt{2}}{2} \quad \frac{\sqrt{2}}{2} v = \frac{\sqrt{2}}{2}
\]

\[
= 80 + 30 \sqrt{2} + 15 \sqrt{2}
\]

\[
= 80 + 45 \sqrt{2}
\]

\[
83.64 \degree C/s
\]

(iii) staying stationary.

\[
\frac{dT}{Dt} = \frac{dT}{dt} = 20 \degree C/s
\]
4a (10 pts). Determine the acceleration \((a_x, a_y, a_z)\) of a particle at \((1, 2, 3)\) at \(t=4\) in the velocity field \(\mathbf{V} = 3\mathbf{i} + x\mathbf{j} + y^2\mathbf{k}\).

\[a_x = \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} = 3 \]

\[a_y = \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} = 3t^2 + 3ty^2

\]

\[a_z = \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} = y^2 + 3txyz

\]
4b. (15pts) An incompressible viscous fluid is placed between two large parallel plates. The bottom plate is fixed and the upper plate moves with a constant velocity, \(U \). For these conditions the velocity distribution between the plates is linear, and can be expressed as \(u = U y/b \). Determine: (a) the volumetric dilatation rate, (b) the vorticity, and (c) the rate of angular deformation.

(a) Volumetric dilatation rate:

\[
\nabla \cdot \mathbf{V} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \quad \Rightarrow \quad \text{Incompressible}
\]

(b) Vorticity:

\[
\omega_y = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} = \frac{U}{b}
\]

(c) Rate of angular deformation:

\[
\dot{\theta} = \frac{\partial v}{\partial y} + \frac{\partial u}{\partial x} = \frac{U}{b}
\]
\[\rho = \frac{10^3 \text{ kg/m}^3}{\text{m}^3} \]

5. (25 pts) A horizontal flow with an inlet diameter of 1 m is divided and has equal flow rates from each outlet. The outlets have diameter of 0.5 m. The inlet gage pressure is 200 kPa and the inlet flow rate is 5 m³/s. Determine the reaction force on the divided flow that must be absorbed by a support system. **Define your control volume and label your nodes.**

\[
\begin{align*}
V_1 &= \frac{V_1}{A_1} = \frac{5 \text{ m}^3/\text{s}}{\frac{\pi}{4} \text{ m}^2} = 6.37 \text{ m/s} \\
V_2 &= \frac{V_2}{A_2} = \frac{2.5 \text{ m}^3/\text{s}}{\frac{\pi}{4} \cdot 0.5^2 \text{ m}^2} = 12.73 \text{ m/s} \\
V_3 &= \vec{V}_2
\end{align*}
\]

Bernoulli's Principle:

\[
\frac{p_1}{\rho} + \frac{1}{2} \rho V_1^2 + \rho g z_1 = \frac{p_2}{\rho} + \frac{1}{2} \rho V_2^2 + \rho g z_2 = \frac{p_3}{\rho} + \frac{1}{2} \rho V_3^2
\]

(assume change \(z \approx 0 \))

\[
\Rightarrow p_2 = p_3 = p_1 + \frac{1}{2} \rho (V_1^2 - V_2^2)
\]

\[
\approx 1393 \text{ kPa}
\]

Force balance:

\[
\sum F_x = P_1 A_1 - P_3 A_3 \cos 45° + F_x
\]

\[
\sum F_y = F_y + P_3 A_3 \cos 45° - P_2 A_2 = m_2 V_2 - m_3 V_3 \cos 45°
\]

\[
\sum F_z = 0
\]

\[
F_x = 17.33 \text{ kN}
\]

\[F_y = 17.33 \text{ kN} \]