CHAPTER VI: DIMENSIONAL ANALYSIS

6.1 Introduction: What is Dimensional Analysis?

Basically, dimensional analysis is a method for reducing the number and complexity of experimental variables which affect a given physical phenomenon using a compacting technique. If a phenomenon depends upon \(n \) dimensional variables, dimensional analysis will reduce the problem to only \(n-k \) dimensionless variables where the reduction \(k \) will depend on the problem complexity. Generally \(k \) equals the number of different dimensions which govern the problem. In fluid mechanics the three basic dimensions are usually taken to be mass, \(m \); length, \(L \); and time, \(t \).

Suppose the force, \(F \), acting on a particular body immersed in a fluid flow depends on the body length, \(L \), flow velocity, \(u \), fluid density, \(\rho \), and fluid viscosity, \(\mu \); that is

\[
F = f(L, u, \rho, \mu)
\]

Generally speaking, it takes about 10 experimental points to define a curve. In order to find the affect of \(L, u, \rho, \) and \(\mu \) on \(F \), we have to do \(10^4 \) experiments. With dimensional analysis, as it will be shown later that

\[
\frac{F}{\rho u^2 L^2} = g \left(\frac{\rho u L}{\mu} \right) / C_F \quad \text{Re} \quad \text{Force Coefficient} \quad \text{Reynolds Number}
\]

we can establish the function, \(g \), by running the experiment for only 10 values of \(\text{Re} \). We do not have to vary \(u, L, \rho, \) or \(\mu \) separately but only the grouping \(\rho u L / \mu \).
6.2 Buckingham's \(\Pi \) Theorem

If an equation truly expresses a proper relationship between variables in a physical process, it will be dimensionally homogeneous; that is, each of its additive terms will have the same dimensions. For example:

\[
P_1 \frac{1}{\rho} + \frac{V_1^2}{2} + gZ_1 = \frac{P_2}{\rho} + \frac{V_2^2}{2} + gZ_2
\]

each term has the same dimension, \([L^2/T^2]\).

If it is known that a physical process is governed by a dimensionally homogeneous relation involving \(n \) dimensional parameters, such as

\[
X_1 = f(X_2, X_3, \ldots, X_n)
\]

where the \(X \)s are dimensional variables, there exists an equivalent relation involving a smaller number, \(n-k \), of dimensionless parameters such that

\[
\Pi_1 = F(\Pi_2, \Pi_3, \ldots, \Pi_{n-k})
\]

where the \(\Pi \)'s are dimensionless groups constructed from the \(X \)s. The reduction, \(k \), is usually equal to (but never more than) the number of fundamental dimensions involved in the \(X \)s.
Method: (Mechanical energy loss in a pipe flow is used as an example for illustration purpose)

1. Write a functional expression for the dimensional relation under investigation. Be sure to include all relevant dimensional parameters such as

$$ gh_L = f(L, D, u, \rho, \mu, \varepsilon) $$

where

- L = pipe length
- D = pipe diameter
- u = flow velocity
- ρ = density of fluid
- μ = fluid viscosity
- ε = pipe roughness
- gh_L = energy loss per unit of mass flow

2. Determine the number of dimensionless parameters you need to construct. This number is equal to the number of dimensional parameters, n, in the functional relation minus a number, k, that is equal to the maximum number of dimensional parameters that cannot form a dimensionless group, Π, among themselves. This number, k, is usually equal to the number of fundamental dimensions involved in the dimensional parameters. It is never greater than the number of fundamental dimensions; that is

$$ n = 7, $$
$$ k = 3, $$
$$ n-k = 7 - 3 $$
$$ n-k = 4 $$

3. Select k dimensional parameters that contain among them all of the fundamental dimensions. Combine these parameters with the remaining $n-k$ dimensional parameters to form the required $n-k$ number of dimensionless parameters. This is done by selecting the remaining $n-k$ parameters one at a time and multiplying by appropriate powers of the k repeating variables so that the result is dimensionless.
For example, select \(p, u, \) and \(D \) as the repeating variables, the remaining four parameters are \(gh_L, L, \mu, \) and \(\varepsilon. \)

Determine the first dimensionless parameter.

\[
\Pi_1 = gh_L \rho^a u^b D^c
\]

Find \(a, b, \) and \(c \) such that \(\Pi_1 \) is dimensionless. Substituting the dimensions of each individual terms gives

\[
\left[\Pi_1 \right] = \left[\frac{L^2}{T^2} \right] \left[\frac{M}{L^3} \right] ^a \left[\frac{L}{T} \right] ^b \left[L \right] ^c
\]

Combining exponents we have

\[
\left[\Pi_1 \right] = [M]^a [L]^{2-3a+b+c} [T]^{-2-b}
\]

In order for \([\Pi_1] \) to be dimensionless the exponents should all vanish. Therefore

\[
\begin{align*}
 a &= 0 \\
 2 - 3a + b + c &= 0 \\
 -2 - b &= 0
\end{align*}
\]

or

\[
\begin{align*}
 a &= 0 \\
 b &= -2 \\
 c &= 0
\end{align*}
\]

Which gives

\[
\Pi_1 = gh_L \frac{u^2}{\mathcal{U}} = \frac{gh_L}{\mathcal{V}^2_{\mathcal{U}}}
\]
Determine the second dimensionless parameter.

\[\Pi_2 = L \rho^a u^b D^c \]

\[[\Pi_2] = [L]\left(\frac{M}{L^3}\right)^a \left(\frac{L}{T}\right)^b [L]^c \]

\[[\Pi_2] = [M]^a [L]^{-3a+b+c} [T]^b \]

\[a = 0, \quad b = 0, \quad c = -1 \]

Therefore

\[\Pi_2 = \frac{L}{D} \]

Determine the third dimensionless parameter.

\[\Pi_3 = \mu \rho^a u^b D^c \]

\[[\Pi_3] = \left(\frac{M}{LT}\right) \left(\frac{M}{L^3}\right)^a \left(\frac{L}{T}\right)^b [L]^c \]

\[[\Pi_3] = [M]^{1+a} [L]^{-1-3a+b+c} [T]^{-1-b} \]

\[a = -1, \quad b = -1, \quad c = -1 \]

Therefore

\[\Pi_3 = \frac{\mu}{\rho \cdot u \cdot D} \]
Find the fourth dimensionless parameter

\[\Pi_4 = \varepsilon \rho^a u^b D^c \]

\[[\Pi_4] = [L] \left[\frac{M}{L^3} \right]^a \left[\frac{L}{T} \right]^{-b} \left[L \right]^c \]

\[[\Pi_4] = [M]^a [L]^{1-3a+b+c} [T]^b \]

\[a = 0, \ b = 0, \ c = -1 \]

Therefore

\[\Pi_4 = \frac{\varepsilon}{D} \]

The final result can be written as

\[\frac{ghL}{U^2} = F \left(\frac{L}{D'}, \frac{\mu}{\rho u D'}, \frac{\varepsilon}{D} \right) \]