Pressure \((p) \), Drag coefficient \((C_D) \), Froude Number \((Fr) \), Reynolds Number \((Re) \) and the coefficient of viscosity \((\mu) \) are given by the following relations respectively:

\[
p = \frac{F}{A}, \quad C_D = \frac{D}{\frac{1}{2} \rho V^2 A}, \quad Fr = \frac{V^2}{gL}, \quad Re = \frac{\rho LV}{\mu}, \quad \tau = \mu \frac{\partial V}{\partial y}
\]

Where:

- \(F \): Force
- \(D \): Drag force
- \(V \): Velocity
- \(L \): Characteristic length
- \(A \): Characteristic Area
- \(g \): Acceleration due to gravity
- \(\tau \): Shear stress

Find out whether these \((p, C_D, Fr, Re \text{ and } \mu) \) are dimensionless or not (use dimensional analysis). Also find out their SI units wherever applicable.

#2

A mass \(m \) that is attached to a spring having spring constant \(k \), when displaced from its equilibrium position and released in the absence of friction executes simple harmonic motion with time period of oscillation given as

\[
T = 2\pi \sqrt{\frac{m}{k}}
\]

Where \(k \) = restoring force per unit displacement. Find the dimensions of \(2\pi \).

#3

Volumetric strain rate is defined as the rate of increase of volume of fluid element per unit volume. In Cartesian coordinates we write the volumetric strain rate as

\[
\frac{1}{\sqrt{\forall}} \frac{D\forall}{Dt} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z}
\]

Where \(\forall \) is volume and \(u, v \) and \(w \) are velocity components. Write the primary dimensions of each term in the relation, and verify that the equation is dimensionally homogeneous.

#4

a.) Air is compressed isentropically such that its pressure is increased by 50%. The initial temperature is 70°C. What is the final temperature?
b.) Air is compressed in a piston cylinder arrangement to $1/10^{th}$ of its initial volume. If the initial temperature is 35°C and the process is frictionless and adiabatic, what is the final temperature?

#5
A piston-cylinder device initially contains 0.4 m3 of air at 100 kPa and 80°C. The air is now compressed to 0.1 m3 in such a way that the temperature inside the cylinder remains constant. Determine the work done during the process.

#6
In potential flow, velocity field can be expressed as gradient of a potential function, ϕ, called the velocity potential such that
\[
\nabla \phi - \frac{\partial \phi}{\partial x} i + \frac{\partial \phi}{\partial y} j = u \hat{i} + v \hat{j} \quad \text{.......... (in 2D)}
\]
Where u and v are the velocity components in x and y directions respectively. State in the \{MLT\} system the dimensions of the quantities (a) ϕ, (b) $\nabla \phi$, (c) $\frac{\partial \phi}{\partial x}$, (d) $\frac{\partial^2 \phi}{\partial y \partial x}$ and (e) $\int \frac{\partial \phi}{\partial x} dy$