1. A boat is moving at 10 m/sec when its engine is shut down. Due to hydrodynamic drag, its subsequent acceleration is \(a = -0.05 \, v^2 \) (m/sec\(^2\)), where \(v \) is the velocity of the boat in m/sec. Determine the boat's velocity 4 seconds after the engine shuts down.

\[
Q = \frac{dv}{dt} = -0.05 \, v^2
\]

\[
\int_{10}^{v} \frac{dv}{v^2} = -0.05 \int_{0}^{t} dt = \int_{10}^{v} v^{-2} \, dv = -\frac{1}{v} \bigg|_{10}^{v}
\]

\[-\frac{1}{v} + \frac{1}{10} = -0.05 \, t\]

\[
\frac{1}{v} = \frac{1}{10} + 0.05 \, t = \frac{1 + 0.05 \, t}{10}
\]

\[
v = \frac{10}{1 + 0.05 \, t}
\]

For \(t = 4 \) sec

\[
v = 3.33 \, \text{m/sec}
\]
1. A car’s acceleration is related to its position by \(a = 0.01 s \text{ (m/sec}^2\text{)}. \) When \(s = 100 \text{ m} \), the car is moving at 12 m/sec. Determine how fast the car is moving when \(s = 420 \text{ m} \).

\[
\begin{align*}
\text{\(a\) } &= \frac{v}{ds} = 0.01s \\
\int_{12}^{v} v \, dv &= 0.01 \int_{100}^{420} s \, ds \\
\left. \frac{v^2}{2} \right|_{12}^{420} &= 0.01 \left. \frac{s^2}{2} \right|_{100}^{420} \\
\frac{v^2}{2} &= \frac{12^2}{2} + 0.01 \left(\frac{420^2 - 100^2}{2} \right) \\
V_f &= 42.5 \text{ m/sec}
\end{align*}
\]
1. The rocket sled shown starts from rest and accelerates at \(a = 30 + 2t \) (m/sec\(^2\)) until its velocity is 400 m/sec. It then hits a water brake and its acceleration is \(a = -0.003v^2 \) (m/sec\(^2\)) until its velocity decreases to 100 m/sec. Determine the distance the sled travels.

\[
\text{Acceleration Phase:} \quad a = 30 + 2t = \frac{dv}{dt}
\]

\[
\int dv = \int (30 + 2t) \, dt \quad \Rightarrow \quad v = 30t + \frac{2t^2}{2} = \frac{ds}{dt}
\]

\[
\int ds = \int (30t + t^2) \, dt \quad \Rightarrow \quad s = 15t^2 + \frac{t^3}{3}
\]

When \(v = 400 \text{ m/sec} \) acceleration ends, deceleration begins.

At this point, \(t = 10s \quad s = 1833 \text{ m} \)

For deceleration, \(a = v \frac{dv}{ds} = -0.003v^2 \)

\[
\int_{s_1}^{s_f} ds = -\frac{1}{0.003} \int_{v_i}^{v_f} \frac{vdv}{v^2}
\]

\[
s_f - 1833 = -\frac{1}{0.003} \left[\ln (100) - \ln (400) \right]
\]

\[
s_f = 2300 \text{ m}
\]
2. A small marble rolls down a chute as shown described by the equation \(y = 1 - 0.5\sqrt{4 - x^2} \), where \(x \) and \(y \) are in feet. The speed of the marble is 12 ft/sec, and has a tangential acceleration \(\dot{v} = 8 \text{ ft/sec}^2 \) when it passes \(x_0 = 1.5 \text{ ft} \). Determine the total acceleration of the marble as it passes point A.

\[
\alpha = \sqrt{\alpha_t^2 + \alpha_n^2} \quad \alpha_t = \dot{v} = 8 \text{ ft/sec}^2
\]

\[
\alpha_n = \frac{V_t}{\rho} = \frac{144}{1.758} \text{ ft/sec}^2
\]

\[
\rho = \frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{3/2}}{\frac{d^2y}{dx^2}}
\]

\[
y = 1 - 0.5(4 - x^2)^{1/2}
\]

\[
\frac{dy}{dx} = 0.5 \times (4 - x^2)^{-1/2}
\]

\[
\frac{d^2y}{dx^2} = 0.5(4 - x^2)^{-3/2} + 0.5x^2(4 - x^2)^{-3/2}
\]

At \(x = x_0 = 1.5 \text{ ft} \)

\[
\frac{dy}{dx} = 0.567 \quad \frac{d^2y}{dx^2} = 0.8639
\]

\[
\rho = 1.758 \text{ ft}
\]

\[
\alpha_n = \frac{144}{1.758} = 81.897 \text{ ft/sec}^2
\]

\[
\alpha = \sqrt{8^2 + 81.897^2} = 82.3 \text{ ft/sec}^2
\]
2. A small sphere slides along a rod described by the equation \(y = x^{\frac{1}{2}} \), where \(x \) and \(y \) are in meters. When the object is at point A (\(x = 2 \text{ m} \)), it is moving at \(v = 7 \text{ m/sec} \), but is slowing down at \(2 \text{ m/sec}^2 \). Determine the acceleration of the sphere at this time.

\[
y = x^{\frac{1}{2}} \quad \frac{dy}{dx} = \frac{1}{2} x^{-\frac{1}{2}}
\]

\[
\frac{d^2 y}{dx^2} = -\frac{1}{4} (x^{-\frac{3}{2}})
\]

\[
\frac{1}{p} = \frac{d^2 y / dx^2} \left[1 + \left(\frac{dy}{dx} \right)^2 \right]^{3/2} = 0.0741 \text{ m}^{-1}
\]

\(p = 13.5 \text{ m} \)

\(q_t = v = -2 \text{ m/sec} \quad q_n = \frac{v^2}{p} = \frac{7^2}{13.5} = 3.63 \text{ m/sec}^2 \)

\(q = \sqrt{q_t^2 + q_n^2} = 4.14 \text{ m/sec} \quad \phi = 80.61^\circ \)
2. A small sphere slides along a rod described by the equation $x^2 = 8y$, where x and y are in feet. When the object is at $x = -8$ ft, and $y = 8$ ft, it is moving at $v = 15$ ft/sec, but is slowing down at 3 ft/sec2. Determine the acceleration of the sphere at this time.

\[y = \frac{x^2}{8} \]

\[\frac{dy}{dx} = \frac{x}{4} \]

\[\frac{d^2y}{dx^2} = \frac{1}{4} \]

\[\frac{1}{P} = \frac{\frac{d^2y}{dx^2}}{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{3/2}} = \frac{\frac{1}{4}}{\left[1 + \left(\frac{x}{4}\right)^2\right]^{3/2}} \]

At $x = -8$, $y = 8$, $\frac{dy}{dx} = -2$ \[\frac{1}{P} = 0.02236 \]

\[P = 44.7214 \text{ ft} \]

\[a_t = \dot{v} = -3 \text{ ft/s}^2 \]

\[a_n = \frac{v^2}{P} = \frac{15^2}{44.7214} = 5.031 \text{ ft/s}^2 \]

\[a = \sqrt{a_t^2 + a_n^2} = \sqrt{(-3)^2 + (5.031)^2} = 5.86 \text{ ft/s}^2 \]

\[\phi = \tan^{-1} \frac{dV}{dx} = \tan^{-1}(-2) = -63.43^\circ \]

\[Q_t \quad Q_n \quad \theta \quad 30.81^\circ \quad 22.57^\circ \]

\[\phi = 63.43^\circ \]
3. For the robot’s arm shown, determine the velocity of point P for $t = 0.8$ sec, where the radial and transverse positions are described by

$$r = 1 - 0.5 \cos (2\pi t) \quad \text{(meters)}$$
$$\theta = 0.5 - 0.2 \sin (2\pi t) \quad \text{(radians)}.$$

$$\dot{r} = \pi \sin (2\pi t)$$
$$\dot{\theta} = -0.4 \pi \cos (2\pi t)$$

For $t = 0.8$ sec

$$v_r = 0.845 \text{ m} \quad \dot{r} = -2.99 \text{ m/sec}$$
$$\dot{\theta} = -0.388 \text{ rad/sec}$$

$$V_r = \dot{r} = -2.99 \text{ m/sec} \quad V_\theta = r \dot{\theta} = -0.328 \text{ m/sec}$$

$$V = \sqrt{V_r^2 + V_\theta^2} = \sqrt{(-2.99)^2 + (-0.328)^2} = 3.0 \text{ m/sec}$$
3. The collar A slides on the circular bar as shown. The radial position of A in meters is given as a function of θ by $r = 2 \cos \theta$. At the instant shown, $\theta = 25^\circ$ and $d\theta/dt = 4 \text{ rad/sec}$. Determine the velocity of A in terms of polar coordinates.

$$r = 2 \cos \theta$$

$$r = -2 \sin \theta \quad \dot{\theta} = V_r$$

$$\dot{\theta} = 4 \text{ rad/sec}$$

$$V_\theta = r \dot{\theta} = (2) \cos 25^\circ (4) = 7.25 \text{ m/sec}$$

$$V_r = -3.381 \text{ m/sec}$$

$$V = \sqrt{V_r^2 + V_\theta^2} = \sqrt{(-3.381)^2 + (7.25)^2} = 8 \text{ m/sec}$$
3. A boat moves as shown at 4 knots and follows a path described by \(r = 10 \theta \) (m), where \(\theta \) is in radians. Determine the boat's velocity when \(\theta = 2\pi \) in terms of polar coordinates. Note: A knot is one nautical mile per hour, or 1852 m/hr.

\[
V = 4 \text{ knots} \left(\frac{1852 \text{ m}}{\text{hr}} \right) hr \frac{\text{hr}}{3600 \text{ sec}} = 2.06 \text{ m/sec}
\]

\[
v = 10 \theta \quad \dot{r} = V_r = 10 \dot{\theta}
\]

\[
V^2 = V_r^2 + V_\theta^2 = \dot{r}^2 + (r \dot{\theta})^2
\]

\[
= (2.06)^2
\]

\[
\text{At } \theta = 2\pi \quad r = 10(2\pi) = 62.8 \text{ m}
\]

\[
(2.06)^2 = (10 \dot{\theta})^2 + r^2 \dot{\theta}^2 = \dot{\theta}^2 [100 + 62.8^2]
\]

\[
\dot{\theta} = 0.0323 \text{ rad/sec}
\]

\[
V_r = 10 \dot{\theta} = 0.323 \text{ m/sec} \quad V_\theta = r \dot{\theta} = 2.032 \text{ m/sec}
\]

\[
V = \sqrt{V_r^2 + V_\theta^2} = \sqrt{(0.323)^2 + (2.032)^2} = 2.057 \text{ m/sec}
\]

\[
= 6.747 \text{ f/sec}
\]

\[
= 4.6 \text{ mi/hr} = 5.3 \text{ knots}
\]

Note: Circumference of the earth is 24,881 mi at the equator.

One minute of arc = \(\frac{24,881}{360(60)} = 1.1519 \text{ mi} = 1 \text{ Nautical mi}
\]

Knot = \(\frac{1 \text{ Nautical mi}}{hr} = \frac{1.1519 \text{ mi} (5280) ft + \text{ mi}}{hr \text{ mi} (3.28) ft} = 18.54 \text{ m/hr}
\]
4. Starring from rest, a Cheetah has a constant acceleration to a maximum velocity of 110 ft/sec. If the animal can reach its maximum speed in 4 seconds, and assuming it can hold its maximum speed thereafter, determine the total distance it can travel in 10 seconds.

\[a = \frac{dv}{dt} \int a \, dt = \int dv \]

\[4a = 110 \quad a = 27.5 \, \text{ft/s}^2 = \frac{dv}{dt} \]

\[\int dv = \int_{0}^{t} 27.5 \, dt \]

\[v = 27.5 \, t = \frac{ds}{dt} \]

\[\int_{0}^{4} v \, dt = \int_{0}^{4} 27.5 \, t \, dt = \int_{0}^{s} ds \]

\[s_1 = \frac{27.5}{2} (4)^2 = 220 \, \text{ft} = 67.07 \, \text{m} \]

From 4 to 10 sec \[s_2 = 110(6) = 660 \, \text{ft} \]

Total distance = \[s_1 + s_2 = 880 \, \text{ft} = 268.29 \, \text{m} \]
4. At the instant shown, the horizontal component of acceleration of the 26,000-lb airplane due to the sum of external forces acting on it is 14 ft/sec². If the pilot suddenly increases the thrust \(T \) by 4000 lb in the direction of \(T \), determine the horizontal component of the plane's acceleration when the added thrust is applied.

Initially

\[
a = \frac{a_x}{\cos 15^\circ} = \frac{14 \text{ ft/s}^2}{\cos 15^\circ}
\]

\[
a = 14.494 \text{ ft/s}^2 \quad T = ma = \frac{26,000}{32.17} (14.494)
\]

\[
= 11,714 \text{ lb}
\]

For an increase in thrust of 4000 lb

\[
\bar{T} = 11,714 + 4000 = 15,714 \text{ lb} = \frac{26,000}{32.17} a_2
\]

\[
a_2 = 19.443 \text{ ft/s}^2
\]

\[
a_{2x} = 19.443 \cos 15^\circ = 18.78 \text{ ft/s}^2
\]
4. The lunar module descends to the moon's surface under retro-thrust as shown. At a height of 5 meters, it is traveling at 2 m/sec downward. At this point the engines are cut off abruptly, and the vehicle falls freely to the surface. If the lunar acceleration due to gravity is 1/6 that of earth, determine the impact velocity at which the vehicle will land.

\[
a = \frac{1}{6} g = v \frac{dv}{dz}
\]

\[
\int_{0}^{5} \frac{1}{6} g \, dz = \int_{2}^{v} v \, dv
\]

\[
\frac{1}{6} g (5 - 0) = \frac{v^2}{2} \bigg|_{2}^{v}
\]

\[
\frac{5(9.81)}{6} = \frac{1}{2} (v^2 - 4)
\]

\[
v^2 = 20.35 \quad v = 4.51 \text{ m/sec}
\]