Introduction to Ordinary Differential Equation:

First Order & Homogeneous ODEs:

Exact Differential Methods:

For given ODE as

\[F(x,y) \, dx + G(x,y) \, dy = 0 \]

The condition for exact differential is

\[\frac{\partial F}{\partial y} = \frac{\partial G}{\partial x} \]

Example: \((x + \sin y) \, dx + (x \cos y - 2y) \, dy = 0\)

Now, \(F(x,y) = x + \sin y \)

\(G(x,y) = x \cos y - 2y \)

\[\frac{\partial F}{\partial y} = \cos y = \frac{\partial G}{\partial x} \]

The given ODE is exact differential equation.

Now, \(U(x,y) = \int (x + \sin y) \, dx + G(x) \)

\[= \frac{x^2}{2} + x \sin y + \int G(x) \]

\[U(x,y) = \int (x \cos y - 2y) \, dy + g(x) \]

\[= x \sin y - y^2 + g(x) \]
\[y = \pm \sqrt{e^x(x-1)+C} \] + solution

Beroulli's Equation:

If the ODE is of the form

\[\frac{dy}{dx} + P(x) y = Q(x) y^n \; ; \; n \neq 1 \]

then use the substitution as

\[v = y^{1-n} \]

and solve the ODE in terms of \(v \) and finally substitute \(v = y^{2-n} \) to get answer in terms of \(y \).

Homogeneous Equations/Substitution Methods:

If the given ODE is Homogeneous to \(n^{th} \) degree \((n = \text{const}) \), then use the substitution \(\frac{x}{y} = v \) for \(y = vx \) and solve the equation.

→ For example, refer to the SI notes on 64th Feb 2008.
\[
\frac{1}{x} \frac{dy}{dx} - \frac{y}{x^2} = 0
\]

\[
\therefore \frac{d}{dx} \left(\frac{y}{x} \right) = 0
\]

Now integrating both sides,

\[
y/x = c
\]

\[
\Rightarrow \left[y = cx \right]
\]

* Separation of Variables Method:*

If the given ODE is of

\[
f(x, y) \, dx + g(x, y) \, dy = 0
\]

\[
f(x, y) = F_1(x), F_2(y)
\]

\[
g(x, y) = G_1(x), G_2(y)
\]

Then,

\[
\frac{F_1(x)}{G_1(x)} \, dx + \frac{G_2(y)}{F_2(y)} \, dy = 0
\]

Now integrating both sides we can get the solution to be

\[
y = xe^x
\]

\[
\Rightarrow \quad \frac{dy}{dx} = \frac{xe^x}{y}
\]

Using separation of variables method,

\[
y \, dy = xe^x \, dx
\]

Now integrating both sides,

\[
\int 2y \, dy = \int xe^x \, dx + c
\]

\[
\therefore \quad y^2 = xe^x - e^x + c
\]
Now, comparing (i) & (iii) we have,

\[f(y) = -y^2 \quad \text{and} \quad g(x) = x^{\frac{3}{2}} \]

1. \[U(x, y) = \frac{x^3}{6} + x \sin y - y^2 \]

Now, solution is \[U(x, y) = \frac{x^3}{6} + x \sin y - y^2 = C \]

Integrating Factor Method:

If the given ODE is not exact and of the form

\[\frac{dy}{dx} + g(x)y = f(x) \]

Find an integrating factor \(I.F. = \rho(x) = e^{\int g(x) \, dx} \)

Now multiply with integrating factor to the given equation.

\[\rho(x) \frac{dy}{dx} + \rho(x) g(x)y = \rho(x)f(x) \]

Example: \[y \, dx - x \, dy = 0 \]

\[\Rightarrow \quad \frac{dy}{dx} + \frac{g(x)}{f(x)} = 0 \]

\[\Rightarrow \quad \text{It is a non-exact differential.} \]

So, Now, \[-x \frac{dy}{dx} + y = 0 \]

\[\Rightarrow \quad \frac{dy}{dx} - \frac{y}{x} = 0 \]

Now, \[\rho(x) = e^{\int -\frac{1}{x} \, dx} = e^{-\ln x} = \frac{1}{x} = \frac{1}{x} \]
Solution of linear ODEs with constant coefficients:

General Approach:

1. First obtain the characteristic equation from the given ODE with constant coefficients.
2. Solve the quadratic characteristic equation.
 3. Possibilities:

 (I) Two distinct real roots
 \[y = A_1 e^{m_1t} + A_2 e^{m_2t} \]
 \[m_1, m_2 \text{ - roots} \]
 \[A_1, A_2 \text{ - constant} \]

 (II) Repeated roots
 \[y = A_1 e^{mt} + B A_2 e^{mt} \]
 \[m \text{ - repeated roots} \]

 (III) Two complex conjugate roots
 \[y = e^{at} (A \cos bt + A \sin bt) \]
 \[m = a + ib \]

Example: \[y + 10y + 21y = 0 \]

Solution: The given ODE is \[y + 10y + 21y = 0 \]

The characteristic equation from the given ODE is,
\[m^2 + 10m + 21 = 0 \]
\[(m+7)(m+3) = 0 \]
\[m = -7, -3 \text{ two distinct real roots} \]
Example 2: \(y'' + 4y' + 5y = 0 \)

The characteristic equation from the given ODE is:

\[m^2 + 4m + 5 = 0 \]

\[\Rightarrow m = \frac{-4 \pm \sqrt{16 - 20}}{2} \]

\[= -2 \pm i \]

So, \(m = -2 \pm i \) are complex conjugate roots.

Solution:

\[y = Ae^{-2t} (A_1 \cos t + A_2 \sin t) \]
Equidimensional Equations: (Linear ODE with Variable Co-eff.)

If the given ODE is of the general form like,

\[a^n \frac{d^n y}{dx^n} + b_{n-1} \frac{d^{n-1} y}{dx^{n-1}} + \ldots + b_1 \frac{dy}{dx} + b_0 y = 0 \]

all b's are constant.

→ To solve such equation, take \(y = x^m \).

and then find out the \(\frac{d y}{d x} \), \(\frac{d^2 y}{d x^2} \), \ldots \(\frac{d^m y}{d x^m} \) and

plug-in those values to the given ODE.

→ Find out the characteristic equation for the above
domain and solve it being quadratic equation
solution.

→ Substitute values of roots to the trial solution
\(x^n \) and get the final solution.

→ For examples of such ODE refer to the 51 notes
06 13th February, 2008.
Solution of Non-Homogeneous Equations:

To solve a Non-Homogeneous ODE equation, solution:

\[y'' + y' + y = f(x) \]

1. Find out the solution of Homogeneous Equation, \(y_h \) by making \(L[y] = 0 \).

2. Find out the Particular Solution, \(y_p \) by using the Method of Undetermined Coefficients or for the cases where a family can be found easily for non-homogeneous terms.

3. General solution will be the sum of the Homogeneous & Particular solution.

\[y = y_h + y_p \]

Method of Undetermined Coefficients for \(y_p \):

- First decide the family (check table in textbook for some families).
- Take trial \(y_p \) from the chosen family.
- Plug it in the given ODE and by using comparison find out the coefficients (unknown) of \(y_p \).

Note: If you find the exact same term in the \(y_p \) as it is in \(y_h \) then modify the \(y_p \) until it doesn't contain the exact same term of \(y_h \).
Example: \(y' - 5y = e^x - xe^{5x} \)

1. Find out \(y_h \):

\[
y' - 5y = 0
\]

\(\Rightarrow \) characteristic equation,

\[
m - 5 = 0 \quad \Rightarrow \quad m = 5
\]

\[
y_h = Ae^{5x}
\]

2. Find \(y_p \):

From non-homogeneous terms,

Family for \(x^2 e^x \)

\[
y_p_1 = e^x (Ax^2 + Bx + C)
\]

For \(x e^{5x} \) part,

\[
y_p_2 = e^{5x} (Dx + E)
\]

Now, the \(y_p_2 \) contains the term of \(y_h \) \(\Rightarrow e^{5x} \)

So we need to modify it,

\[
y_p_2 = e^{5x} (Dx^2 + Ex)
\]

Now the force term the terms of \(y_h \).

So, \(y_p = y_p_1 + y_p_2 \)

\[
y_p = e^x (Ax^2 + Bx + C) + e^{5x} (Dx^2 + Ex)
\]

Now, \(y_p' = e^x (2Ax + B) + e^x (Ax^2 + Bx + C) + e^{5x} (2Dx + E) + 5e^{5x} (Dx^2 + Ex) \)
Now from given ODE

\[y' - 5y = x^2 e^x - x e^{5x} \]

\[e^x (2Ax + B) + e^x (Ax^2 + Bx + C) + e^{5x} (2Dx + E) \]

\[+ 5e^{5x} (Dx^2 + Ex) - 5 e^x (Ax^2 + Bx + C) - 5 e^{5x} (Dx^2 + Ex) \]

\[= x^2 e^x - x e^{5x} \]

\[2Ax e^x + B e^x + 4e^x (Ax^2 + Bx + C) + 2Dxe^{5x} + E e^{5x} \]

\[= x^2 e^x - x e^{5x} \]

\[2Ax e^x + B e^x - 4Ax e^x - 4Bxe^x - 4C e^x + 2Dxe^{5x} \]

\[+ E e^{5x} - x^2 e^x - x e^{5x} \]

\[(2A - 4B) e^x - 4Ax e^x + (B - 4C) e^x + 2Dxe^{5x} + E e^{5x} \]

\[= x^2 e^x - x e^{5x} \]

Now, comparing both sides we have:

\[2A - 4B = 0 \quad B - 4C = 0 \quad E = 0 \]

\[-4A = 1 \quad 2D = -1 \]

\[\Rightarrow A = -\frac{1}{4} \quad D = -\frac{1}{2} \]

\[\text{Now, } a((-\frac{1}{4}) - 4B = 0 \]

\[-4B = \frac{1}{2} \]

\[\Rightarrow B = -\frac{1}{8} \]

\[\text{Now, } -\frac{1}{8} - 4C = 0 \]

\[-4C = \frac{1}{8} \]

\[\Rightarrow C = -\frac{1}{32} \]
So, now,

\[y_p = e^x \left(-\frac{1}{4} x^2 - \frac{1}{8} x - \frac{1}{32} \right) + e^{5x} \left(-\frac{1}{2} x^2 \right) \quad \text{Eq. (1)} \]

\[y_p = e^x \left(-\frac{1}{4} x^2 - \frac{1}{8} x - \frac{1}{32} \right) - \frac{1}{2} x^2 e^{5x} \]

Now, general solution,

\[y = y_h + y_p \]

\[y = A_1 e^{5x} + e^x \left(-\frac{1}{4} x^2 - \frac{1}{8} x - \frac{1}{32} \right) - \frac{1}{2} x^2 e^{5x} \]

Solution.