Questions:

1. Use modified Euler's method with the specified step size to determine the solution to the given IVP at the specified point.
 (1) \(y' = 4y - 1 \); \(y(0) = 1 \); \(y(0.5) \) with \(h = 0.1 \)
 (2) \(y' = x - y^2 \); \(y(0) = 2 \); \(y(0.5) \) with \(h = 0.1 \)

2. Apply RK4 with \(h = 0.1 \) to determine an approximation to the solution to the IVP
 (3) \(y' = y - x \); \(y(0) = 0.5 \); \(y(0.5) \)
 (4) \(y' = 2xy^2 \); \(y(0) = 0.5 \); \(y(0.5) \)

3. Approximate \(y(0.2) \) when \(y(t) \) is the solution of the IVP
 \[y'' + 2y' + 4y = 0 \]; \(y(0) = 2 \); \(\frac{dy(0)}{dt} = 0 \)
 using,
 (a) Euler's method (b) RK4 method

 with \(h = 0.1 \) for both methods. Find the exact solution of the problem and compare the actual value of \(y(0.2) \) with \(y_2 \).